Exercise 59

Find all points on the graph of the function $f(x)=2 \sin x+\sin ^{2} x$ at which the tangent line is horizontal.

Solution

The tangent line to $f(x)$ is horizontal wherever the first derivative is zero. Evaluate the first derivative.

$$
\begin{aligned}
f^{\prime}(x)=\frac{d f}{d x} & =\frac{d}{d x}\left(2 \sin x+\sin ^{2} x\right) \\
& =2 \frac{d}{d x}(\sin x)+\frac{d}{d x}\left(\sin ^{2} x\right) \\
& =2(\cos x)+(2 \sin x) \cdot \frac{d}{d x}(\sin x) \\
& =2(\cos x)+(2 \sin x) \cdot(\cos x) \\
& =2 \cos x+2 \sin x \cos x \\
& =2 \cos x(1+\sin x)
\end{aligned}
$$

Set it equal to zero.

$$
2 \cos x(1+\sin x)=0
$$

Solve for x.

$$
\begin{array}{lll}
2 \cos x=0 & \text { or } & 1+\sin x=0 \\
\cos x=0 & \text { or } & \sin x=-1 \\
x=\frac{1}{2}(2 n-1) \pi, \quad n=0, \pm 1, \pm 2, \ldots & \text { or } & x=\frac{3 \pi}{2}+2 n \pi, \quad n=0, \pm 1, \pm 2, \ldots
\end{array}
$$

Find the corresponding y-values by plugging these values of x into the function for $f(x)$.

$$
\begin{aligned}
f\left(\frac{1}{2}(2 n-1) \pi\right) & =2 \sin \left[\frac{1}{2}(2 n-1) \pi\right]+\sin ^{2}\left[\frac{1}{2}(2 n-1) \pi\right]=2(-1)^{n+1}+1 \\
f\left(\frac{3 \pi}{2}+2 n \pi\right) & =2 \sin \left(\frac{3 \pi}{2}+2 n \pi\right)+\sin ^{2}\left(\frac{3 \pi}{2}+2 n \pi\right)=2(-1)+1=-1
\end{aligned}
$$

Therefore, the points on the curve $f(x)=2 \sin x+\sin ^{2} x$ that have a horizontal tangent line are

$$
\left(\frac{1}{2}(2 n-1) \pi, 2(-1)^{n+1}+1\right) \quad \text { and } \quad\left(\frac{3 \pi}{2}+2 n \pi,-1\right)
$$

where n is an integer.

This is confirmed in the graph of $f(x)$ versus x.

